La electrodinámica consiste en el movimiento de un flujo de cargas eléctricas que pasan de una molécula a otra, utilizando como medio de desplazamiento un material conductor como, por ejemplo, un metal.Para poner en movimiento las cargas eléctricas o de electrones, podemos utilizar cualquier fuente de fuerza electromotriz (FEM), ya sea de naturaleza química (como una batería) o magnética (como la producida por un generador de corriente eléctrica), aunque existen otras formas de poner en movimiento las cargas eléctricas.Cuando aplicamos a cualquier circuito eléctrico una diferencia de potencial, tensión o voltaje, suministrado por una fuente de fuerza electromotriz, las cargas eléctricas o electrones comienzan a moverse a través del circuito eléctrico debido a la presión que ejerce la tensión o voltaje sobre esas cargas, estableciéndose así la circulación de una corriente eléctrica cuya intensidad de flujo se mide en amper (A).
Esta se divise en dos tipos:
Electrodinámica clásica (CED)
Albert Einstein desarrolló la relatividad especial merced a un análisis de la electrodinámica. Durante finales del siglo XIX los físicos se percataron de una contradicción entre las leyes aceptadas de la electrodinámica y la mecánica clásica. En particular, las ecuaciones de Maxwell predecían resultados no intuitivos como que la velocidad de la luz es la misma para cualquier observador y que no obedece a la invariancia de Galileo. Se creía, pues, que las ecuaciones de Maxwell no eran correctas y que las verdaderas ecuaciones del electromagnetismo contenían un término que se correspondería con la influencia del éter lumínico.
Después de que los experimentos no arrojasen ninguna evidencia sobre la existencia del éter, Einstein propuso la revolucionaria idea de que las ecuaciones de la electrodinámica eran correctas y que algunos principios de la mecánica clásica eran inexactos, lo que le llevó a la formulación de la relatividad especial.
Unos quince años antes del trabajo de Einstein, Wiechert y más tarde Liénard, buscaron las expresiones de los campos electromagnéticos de cargas en movimiento. Esas expresiones, que incluían en efecto del retardo de la propagación de la luz, se conocen ahora como potenciales de Liénard-Wiechert. Un hecho importante que se desprende del retardo, es que un conjunto cargas eléctricas en movimiento ya no puede ser descrito de manera exacta mediante ecuaciones que sólo dependa de las velocidades y posiciones de las partículas. En otras palabras, eso implica que el lagrangiano debe contener dependecias de los "grados de libertad" internos del campo.
Electrodinámica cuántica (QED)
La electrodinámica cuántica (ó QED, Quantum ElectroDynamics), como sugiere su nombre, es la versión cuántica de la electrodinámica. Esta teoría cuántica se describe el campo electromagnético en términos de fotones intercambiados entre partículas cargadas, al estilo de la teoría cuántica de campos. Por tanto, la electrodinámica cuántica se centra en la descripción cuántica del fotón y su interacción/intercambio de energía y momento lineal con las partículas cargadas.
Se puede señalar que la formulación de la teoría de la relatividad restringida se compone de dos partes, una de ellas «cinemática», descrita anteriormente, y que establece las bases de la teoría del movimiento – y, por consiguiente, del conjunto de la teoría– dándoles su expresión matemática, y una parte «electrodinámica» que, combinando las propuestas de la primera parte con la teoría electromagnética de Maxwell, Hertz y Lorentz , establece deductivamente un cierto número de teoremas sobre las propiedades de la luz y, en general de las ondas electromagnéticas como, asimismo, la dinámica del electrón.
En la parte correspondiente a la electrodinámica, Albert Einstein formula su teoría aplicando, para un espacio vacío, la transformación de coordenadas –que forma la base de la cinemática relativista– a las ecuaciones de Maxwell-Hertz; esta aplicación revela, una vez más, que la transformación, lejos de ser un simple artificio de cálculos, posee un sentido físico esencial: las leyes del electromagnetismo clásico determinan las propiedades de dos vectores diferentes, uno del otro, el campo eléctrico de componentes en el sistema y el campo magnético de componentes ; ahora bien, transformando las ecuaciones de a e imponiendo, en función a los principios de la relatividad, que las nuevas componentes de los campos en K, se obtienen unas relaciones donde las componentes transformadas del campo eléctrico y del campo magnético respectivamente dependen, a su vez, de los componentes iniciales de ambos campos, lo que conduce con asombrosa naturalidad a la unificación teórica del magnetismo y de la electricidad.
No hay comentarios:
Publicar un comentario